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The Dikin-Karmarkar Principle for Steepest
Descent

Catherine Marie Samuelsen

Abstract

Steepest feasible descent methods for inequality constrained optimization problems
have commonly been plagued by short steps. The consequence of taking short steps
is slow convergence or even convergence to non-stationary points (zigzagging). In
linear programming, both the projective algorithm of KKarmarkar (1984) and its affine-
variant, originally proposed by Dikin (1967), can be viewed as steepest feasible descent
methods. However, both of these algorithms have been demonstrated to be effective
and seem to have overcome the problem of short steps. These algorithms share a
common norm. It is this choice of norm, in the context of steepest feasible descent,
that we refer to as the Dikin-Karmarkar Principle.

This research develops mathematical theory to quantify the short step behavior of
Euclidean norm steepest feasible descent methods and the avoidance of short steps for
steepest feasible descent with respect to the Dikin-Karmarkar norm. While the theory
is developed for linear programming problems with only nonnegativity constraints on
the variables, our numerical experimentation demonstrates that this behavior occurs
for the more general linear program with equality constraints added. Our numerical
results also suggest that taking longer steps is not sufficient to ensure the efficiency of
a steepest feasible descent algorithm. The uniform way in which the Dikin-Karmarkar

norm treats every boundary is important in obtaining satisfactory convergence.
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Chapter 1

INTRODUCTION

The announcement of a practical, highly-efficient polynomial-time algorithm for linear
programming by Karmarkar [23] in 1984 created much excitement in the mathematical
community. This single algorithm sparked a huge amount of related research—to
verify numerical claims, to modify and extend the algorithm, to develop new interior
point methods (both for linear and nonlinear programming). Soon after Karmarkar’s
projective algorithm was published, its affine-scaling variant was proposed by several
researchers (for example, Barnes [5] and Vanderbei, Meketon, and Freedman[40}). It
was later learned that the affine-scaling variant had originally been introduced by
Dikin [13] in 1967.

The algorithms proposed both by Dikin and Karmarkar both solve subproblems
at each iteration which produce steepest feasible descent directions with respect to
a common, well-chosen norm. However, steepest feasible descent methods have been
known to produce short steps which may result in very slow convergence or con-
vergence to nonstationary points. The norm used by Dikin and Karmarkar could
be considered an optimal choice for steepest feasible descent applied to linear pro-
gramming since global convergence properties have been proven and good practical
results have been demonstrated. It is this choice of norm—in the context of solving
problems with nonnegativity constraints—that we refer to as the Dikin-Karmarkar
Principle. Steepest feasible descent with respect to this norm has the surprising prop-
erty that the steps are bounded away from short steps as the boundary is neared,
unlike Euclidean norm steepest feasible descent which virtually assures that as the
solution is approached short steps will be taken.

This thesis is organized in the following manner. Chapter 2 contains a descrip-
tion of steepest descent methods for unconstrained and constrained optimization and
an historical perspective. Chapter 3 points out the difficulty that steepest feasible
descent methods encounter because of short steps—the so-called “zigzagging” phe-
nomenon. Chapter 4 presents Karmarkar’s projective algorithm and its affine-scaling

variant. Dikin’s algorithm is also presented. The relation of both the projective al-



gorithm and the affine-scaling algorithm to steepest descent is discussed. Chapter 5
will discuss the Dikin-Karmarkar norm along with a geometric interpretation. The
observations concerning the behavior of steepest feasible descent with respect to the
Euclidean norm versus the behavior of steepest feasible descent with respect to the
Dikin-Karmarkar norm which motivated this research are discussed. Chapter 6 con-
tains the theoretical results of this research. We concern ourselves with the special
linear program in which the only constraints are nonnegativity constraints on the
variables. We show that as the boundary is approached, the steepest feasible de-
scent step with respect to the Euclidean norm must become progressively shorter and
in fact, asymptotically approaches the shortest possible step. Whereas, for steepest
feasible descent with respect to the Dikin-Karmarkar norm, asymptotically, as the
boundary is approached, the step is bounded away from that shortest step. This be-
havior is demonstrated numerically, in the more general linear programming problem
with linear equality constraints, in Chapter 7. Chapter 8 gives some final remarks

and observations.



Chapter 2

STEEPEST DESCENT

2.1 Unconstrained Minimization

We begin by considering the unconstrained minimization problem
minimize f(z), (2.1)

where f:IR" — IR is differentiable.

A natural requirement for an iterative method to solve problem (2.1) is that the
objective function value decrease at each iteration, i.e. f(z + ad) < f(z), for some
a > 0. To obtain decrease, an obvious choice for d is a vector that gives the greatest
local decrease in the objective function f. In other words, we ask for a vector that
minimizes V f(z) Td with respect to d. Clearly, to make this minimization well-
defined, we must impose some type of normalization on the direction vector d. This

notion is formalized in the following definition.

Definition 2.1 (Steepest Descent Direction) By a steepest descent di-
rection for f at x , with respect to a given norm, || - ||, we mean any d

that solves
min'irnize Vf(z)Td 2.2)
subject to || d || £ 6,

for some 6 > 0.

Since {d || d]| <8} isa compact set, a solution to Problem (2.2) exists, though it
may not be unique.
Clearly, the solutions to (2.2) depend on the choice of norm. When the norm is a

weighted Euclidean norm, i.e.
- llw =Wl (2.3)

where W € IR**™ is a symmetric, positive definite matrix, then the steepest descent

direction, with respect to the W-norm (2.3), is unique (for a given 6§ > 0) and it is a



positive scalar multiple of
— W2V f(z). (2.4)
For W = I, the norm is the Euclidean norm, and the negative gradient is a direction

of steepest descent.
We formally define a method of steepest descent as follows:

Definition 2.2 (Method of Steepest Descent) By a method of steepest

descent for problem (2.1), we mean any iterative method of the form,

2 = 2F 4o df, o >0,

k

in which d* is steepest descent direction for f at z* as described in

Definition 2.1.

We refer to a problem of the form (2.2) as a steepest descent subproblem for prob-
lem (2.1). |

2.2 Linearly Constrained Minimization

Consider the optimization problem with linear equality constraints and nonnegativity
constraints on the variables:
minimize f(z)
subject to Ar =b (2.5)
z2>0,

where f: IR* — IR,z € IR*, b € IR™, and A € IR™*". We say that z is strictly
feasible for problem (2.5) if Az =5 and z > 0.

The concept of steepest descent is generalized to the linearly constrained prob-
lem (2.5) as follows:

Definition 2.3 (Steepest Feasible Descent Direction) By a steepest fea-
sible descent direction for f at x, with respect to a given norm, ||-||, we

mean any d that solves

minimize V f(z)Td
subject to Ad =0 (2.6)
el <é

for z, a strictly feasible point for problem (2.5), and some § > 0.



REMARK: Any direction that satisfies Definition 2.3 is a feasible direction as de-
scribed by Zoutendijk [42]. He described a class of solution methods for constrained
minimization, so-called methods of feasible directions. In this class of iterative meth-

ods, the starting point is feasible and all the iterates remain feasible.

Again, the solutions to problem (2.6) depend on the norm. The steepest feasible
descent direction with respect to the W-norm,(2.3), is simply the projection onto
the null space of A, in the W-norm, of the steepest descent direction for the un-
constrained problem. In particular, the steepest feasible descent direction is given
by

— W1 - AT(AW?AT) AW V f(2). (2.7)
Note that in the case where we are minimizing f with only nonnegativity constraints
on the variables, the steepest feasible descent direction, with respect to the W-norm,
reduces to
~W?V{(z),
for z > 0.
Analogous to Definition (2.2), we give the following definition.

Definition 2.4 (Method of Steepest Feasible Descent) By a method of
steepest feasible descent for problem (2.5), we mean any iterative method
of the form,

o = 2F +ap df, >0,
in which d* is steepest feasible descent direction for f at zF as described

in Definition 2.1.

This definition ensures that the iterates remain strictly feasible.* We refer to a prob-

lem of the form (2.2) as a steepest descent subproblem for problem (2.1).

2.3 Historical Perspective
2.3.1 Cauchy

The gradient method was originally proposed by Cauchy (8] in 1847 and is a method
of steepest decent with respect to the Euclidean norm. Cauchy considered the prob-

lem of minimizing a function of several variables. Using a first-order Taylor series

“In accordance with contemporary terminology, such a method could be called and intertor point
method.



approximation he noted that taking a sufficiently small step in the direction of the
negative gradient would guarantee decrease in the value of the objective function.
Cauchy chose the steplength to give the global minimizer in the negative gradient

direction, i.e. «aj solved
mirolliggize f(zF — aV f(z*)). (2.8)

No convergence analysis was given in this classical paper. Cauchy simply suggested
that since the function value would decrease at each step, eventually the minimum
would be achieved. (Cauchy made the remark that in order to obtain the new iterates
quickly, one could use Newton’s method or the secant method on the one dimensional

minimization subproblem to obtain a steplength.)

2.3.2 Curry

In 1944, Curry [11] published perhaps the first convergence result for the gradient
method for unconstrained optimization. For continuously differentiable functions
in IR", he proved that with the proper choice of steplength, every limit point of
the sequence generated by the gradient method is a stationary point of f, i.e. the
gradient method cannot converge to a point that is not a stationary point. Curry’s
choice of steplength aj was the first stationary point of problem (2.8). Curry’s result
also holds where the steplength oy is the first local minimizer in the negative gradient
direction. Byrd and Tapia [7] extended Curry’s theorem to arbitrary choices of norm

and to spaces of arbitrary dimension.

2.3.3 Rosen

In 1957, Rosen extended the gradient method to constrained optimization. His gra-
dient projection method was proposed first for linearly constrained problems [34, 35]
and then extended to nonlinearly constrained problems [36] in 1961. Rosen’s gradient
projection method is based on a projection of the gradient of the objective function
onto a subspace of the domain, where the subspace is defined by the intersection of
hyperplanes that are determined by the active constraints.

Given a feasible point z°, Rosen’s method generates a sequence of the form
o= 25 4 (- V f(zF)) (2.9)

where P, is a linear Euclidean norm projection operator. The steplength is taken

to be the minimum between the value for which a new inequality constraint becomes



active and the value which minimizes the objective function in the current direction.
For the linearly constrained problem (2.5), When the constraint matrix, A, has full
rank, the steepest feasible descent with respect to the Euclidean norm is given by
the Euclidean norm projection of V f(z) onto the null space of the constraint matrix
A. This follows from a straightforward application of the second order necessary

conditions to problem (2.6).

2.3.4 Goldstein and Levitin & Poljak

A gradient projection method for convex programming in a Hilbert space setting was
proposed by Goldstein [19, 20] in 1964 and independently by Levitin and Poljak [27]

in 1965. The method computes the iterative sequence as follows:
k+1 ,__ k k
= Ps(z™ — eV f(2")), (2.10)

where Ps is the closest point projection operator for the Hilbert space and S is the
convex feasible region.

Goldstein proved that Curry’s theorem holds under the assumptions: (1) the
objective function, f, is twice continuously differentiable, (2) f is bounded below
on the convex feasible set S, and (3) the Hessian of f is uniformly bounded on
S. Levitin and Poljak proved Curry’s theorem holds under the assumptions: (1) the
Jacobian of f is uniformly Lipschitz continuous on the feasible region S, and (2)

the convex feasible region is a bounded.

2.3.5 McCormick and Tapia

In 1972, McCormick and Tapia [29] studied Goldstein’s gradient projection method
for a general objective function. They proved Curry’s theorem under less stringent
assumptions than needed by Goldstein and Levitin and Poljak. They assumed that
(1) the objective function f is continuously Fréchet differentiable on the feasible

region S and (2) the feasible region S is closed and convex,



Chapter 3

THE CURSE OF SHORT STEPS

3.1 The Phenomenon of Zigzagging

It is natural to ask whether Curry’s theorem holds for Rosen’s projected gradient
method applied to as simple a problem as (2.5), i.e. for steepest feasible descent with

respect to the Euclidean norm.

3.1.1 Zoutendijk

Zoutendijk [42] recognized that most feasible direction methods, without careful
steplength control, may converge to a point that is not a stationary point. He pointed
out that these methods have the potential to generate iterates that bounce between
constraints without making adequate progress on the minimization problem. In re-
quiring the iterates to be feasible, the steplength choice often emphasize feasibility
at the expense of function decrease. He coined the term zigzagging to describe this
phenomenon. Zigzagging occurs when the steplength is determined by the constraints
rather than the minimization of the objective function. As a result, zigzagging can
result in convergence of the iterates to a point which is not a solution to the mini-

mization problem.

3.1.2 Wolfe’s Example

Wolfe studied the behavior of Rosen’s Gradient Projection method for a special case
of problem (2.5) where the only constraints were nonnegativity constraints on the
variables:

minimize f(x)

. (3.1)
subject to z > 0.

He set out to prove that, under mild conditions on the objective function, the gradient
projection method would converge. In fact, he was able to construct an example for

which Rosen’s method produced a sequence of points that converged to a point, Z,



that was not a stationary point. (The results are seen graphically in Figure 3.1.1H

Hence, Rosen’s gradient projection method does not satisfy Curry’s theorem.

8>

Figure 3.1 Wolfe’s Zigzagging Example

3.2 McCormick’s Anti-zigzagging Strategy

McCormick recognized that in Wolfe’s example, the zigzagging phenomenon occurred
because, after a finite number of iterations, the local minimization along the com-
puted step direction did not occur. Instead, the steplength was based entirely on
feasibility considerations. In his paper [30], descriptively entitled, “Anti-zigzagging
by Bending,” McCormick sought to modify Rosen’s method so that longer steps would
be taken at each iteration and thus avoid the short steps associated with zigzagging.
He proposed, for problem (3.1), to take the steepest feasible descent direction initially.

tminimize g—(:w:2 — zy + y?)+, subject to z,y,2z > 0.
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However, when a boundary was encountered, instead of stopping, the step direction
vector was “bent” to follow the newly encountered constraint. The next iterate was
chosen to minimize the objective function along this bent vector. Of course, several
“bendings” might be required. This approach allowed longer steps to be taken and
prevented the problem of the steplength being dictated by the constraints and not the
minimization. McCormick demonstrated that this strategy prevented zigzagging, i.e.,
he proved a version of Curry’s theorem. McCormick and Tapia [28] noted that the
“bending” method was equivalent to Goldstein’s gradient projection method for the
special case where the feasible region is the nonnegative orthant. Then they extended
Curry’s theorem to the general gradient projection method [29].

3.3 Observations

Initially, both Goldstein’s and Rosen’s methods take a step in the steepest feasible
descent direction. (See the corollary to Proposition 2 in McCormick and Tapia [29]).
It is when a new boundary is encountered that the difference occurs. The gradient .
projection direction adaptively changes as it meets a boundary, while the projected
gradient method stops at the boundary. It is this seemingly small distinction which
allows one to zigzag while the other cannot.

These observations indicate the importance of considering not only the active con-
straints, but also the inactive constraints when making a choice of direction at any
iteration. The Euclidean norm steepest feasible descent does not use information
about the inactive constraints in determining the direction—it only considers which
direction gives the greatest amount of local decrease. In choosing the norm in which
decrease is measured, we believe that it is correct to include information about dis-
tance from the inactive constraints. It is this property that the Dikin-Karmarkar

norm possesses which contributes to its good convergence properties.
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Chapter 4

THE DIKIN & KARMARKAR ALGORITHMS

4.1 Karmarkar’s Algorithm

In 1984, Karmarkar (23] proposed a polynomial-time method for the solution of linear

programming problems of the form

minimize ¢ Tz

subject to Az =0 (@.1)

eTz=1
z 20,
where ¢, z,e € R", e = (1,1, ..., 1, 1)T, A € R™*™ is of full row rank, and the

optimal objective function value is zero.

KARMARKAR’S ALGORITHM: Given an initial, strictly feasible
point, z°, for problem (4.1) and a tolerance for the objective function,
€>0,let k=0.

WHILE c¢ZzF > ¢ DO
o D; « diag(z*)
e Compute £ € IR"™ as the solution to
minimize ¢ 7T Dz’

subject to ADz' =0
ST (4.2)

le—2l2<6
o z¥ — Di/eTDi
e k—k+1
END DO

Theoretically the algorithm was appealing because it was a polynomial-time al-

gorithm. Karmarkar’s algorithm was not the first algorithm for linear programming
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to have a theoretical polynomial-time bound. In 1979, Khachiyan [24] proposed a
modification to the ellipsoid method which led to the first polynomial-time algo-
rithm for linear programming. Unfortunately, the practical performance of the el-
lipsoid method was disappointing—it was not competitive with the simplex method.
However, Karmarkar’s method was practically appealing because, in some cases, its
performance did rival that of the simplex method. The approach of the algorithm
was much different than that of the simplex algorithm, the iterates moving through
the interior of the feasible region rather than along the boundaries.

While Karmarkar’s algorithm is not a straightforward steepest feasible descent
method for problem (4.1), the subproblem solved at each iteration has the form of
a steepest feasible descent subproblem with respect to a weighted Euclidean norm.
- That norm is. - .
I-lp=ID7" |, D=dag(z*), ~  (43)
where zF is the current, strictly feasible iterate. It has been shown by Morshedi and
Tapia [31] and by Tapia and Zhang (38] that Karmarkar’s algorithm is actually a
steepest feasible descent method applied to the nonlinear program which results from

a simple transformation of the linear program.

4.2 The Affine-Variant

Subsequent to the announcement of Karmarkar’s algorithm, researchers considered
modifications to the algorithm. Motivated to simplify Karmarkar’s algorithm and and
to develop an algorithm that gave monotone decrease in the objective function, the
affine-scaling variant was introduced. It provided a simpler scaling of the problem,
decrease in the objective function at each iteration, and no longer required that the
right hand side of the linear equality constraints be zero or that objective function
be zero at the solution.

The subproblem that is solved at each iteration 1s

minimize ¢ T Dz’ (4.4)
subject to ADz' =0 (4.5)
eTDz' =1 (4.6)

lle — 2'||2 < 6. (4.7)
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We can, via a change of variables, produce an equivalent subproblem where the the
matrix D does not appear in (4.4), (4.5), and (4.6) and (4.7) becomes

D7}z — 2)l2 < 6.

In this manner, we observe that the affine variant can be viewed as a method of

steepest feasible descent with respect to the norm (4.3).

4.3 Dikin’s Algorithm

In 1967, Dikin [13] considered an extension of the method of steepest descent to
linear and quadratic programming problems with inequality constraints—specifically
‘nonnegativity of the variables. He proposed an iterative method to solve linear pro-

gramming problems of the form

minimize c¢Tz
subject to Az =b (4.8)
z >0,

where ¢,z € IR*, b € IR™, and A € IR™*" is of full row rank.

DIKIN’S ALGORITHM: Given an initial, strictly feasible point, z°,
for problem (4.8), let £ = 0.

1. D « diag(z*)
2. Compute u* € IR™ as the solution to
minimize Y [z% (3 (aiju; — ¢;))? (4.9)
=1 =1
3. 8 — ATuF —¢
4, ¢k — (a:k Tb‘k)Z
5. WHILE ¢, #0 DO
)‘k «— 1/\/&

o rFtl — gk 4 X\ D26
e k—k+1
e GOTO1

END DO
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Note that problem (4.9) is exactly the least squares problem,
e s + T 12
minimize || Ax ¢ — éll3, (4.10)
u€R™

for A = AD; and é = Drc. When A has full row rank, the unique solution to
problem (4.10) is given by

p* = (AD;AT) ' ADjc. (4.11)
Therefore, the step taken at each iteration is
~ D*[I — AT(AD*ATY'A DY, (4.12)

~ which is exactly the steepest feasible descent direction given in (2.7).

Dikin [14] proved a version of Curry’s theorem for his algorithm, namely that any
limit point of the iterative sequence is a solution of the linear programming problem
with the only requirement being primal nondegeneracy. So we find that the weighted
Euclidean norm chosen by Dikin and Karmarkar overcomes the zigzagging problem
associated with Euclidean norm steepest feasible descent. We will refer to the common
norm (4.3) as the Dikin-Karmarkar or DK-norm.

We know that our iterates x* may have some components that are converging
to zero. So any measurement of distance should be a relative one [38]. It is this
relative weighting of the steps that allows us to look equally at components that
are converging to zero that we believe contributes to making the Dikin-Karmarkar
norm an ideal choice. We refer to the choice of the Dikin-Karmarkar norm in the
context of steepest feasible descent for problems with nonnegativity constraints as

the Dikin-Karmarkar principle.
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Chapter 5

THE DIKIN-KARMARKAR PRINCIPLE

The choice of norm by Dikin and Karmarkar is specifically suited to problems with
nonnegativity constraints. For this reason, as we look at the role of the norm in
this context, we will restrict our attention to linear programming problems with
nonnegativity constraints on all the variables:

minimize ¢ Tz
‘subject to z>0. G

We are specifically interested in steepest descent directions for this problem—with

respect to the Euclidean norm and with respect to the Dikin-Karmarkar norm.

5.1 The Choice of Norm

y
Dikin-Karmarkar Unit Ball
/ -
@ — )= Euclidean Unit Ball
T

Figure 5.1 The Dikin-Karmarkar and Euclidean Unit Balls in IR?

In Figure 5.1, we illustrate the unit balls in both the Euclidean norm and the Dikin-
Karmarkar norms in IR?. The geometry of the Dikin-Karmarkar unit ball changes

based on the distance the current iterate is from the boundaries, while the Euclidean

ball is fixed, regardless of the boundaries.
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5.2 The Dikin-Karmarkar Principle

When using an iterative method to solve problems with inequality constraints, it
is important that the direction chosen at each iteration take into account all the
boundaries of the feasible region. When using steepest feasible descent, the choice of
the Euclidean norm ignores the boundaries in the choice of direction—the direction
is always the negative gradient. However, the Dikin-Karmarkar norm is such that the
distance of the current strictly feasible iterate from each of the boundaries is taken
into account in the norm itself. It is this choice of norm, in the context of solving
problems with inequality constraints, that we call the Dikin-Karmarkar Principle. By
taking all the boundaries into account, the norm allows the direction taken to not only
focus on the amount of local decrease, but also how far we can move in the direction
chosen before a boundary is.encountered. We believe and demonstrate in the theory
and numerical results that follow, that it is this consideration of the boﬁndary that
results in steepest feasible descent with respect to the Dikin-Karmarkar norm being a
more effective algorithm than steepest feasible descent with respect to the Euclidean

norm.

5.3 Behavior of Steepest Feasible Descent Near the Boundary

Figure 5.2 Sequence Converging to the Boundary

We have seen in Chapter 3 that steepest feasible descent methods may encounter
problems with convergence as a result of taking short steps. In particular, zigzagging

can occur as steps are taken toward the boundary. However, in linear programming
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problems, we know that the solution lies on the boundary; so, taking such steps is
necessary.

We gained intuition about the geometry of steepest feasible descent with respect
to both norms by looking at what directions would be generated by the algorithms
at each point of a sequence converging to the boundary. In Figure 5.2, we see a
particular sequence of points converging to the boundary.

We choose a particular linear functional ¢ Tz. Figure 5.3 illustrates the directions
generated when we use steepest descent with respect to the Euclidean norm at each
point of this particular sequence. Figure 5.4 illustrates the directions generated when
we use steepest descent with respect to the Dikin-Karmarkar norm at each point in
this same sequence.

" Note that the directions generated using the Euclidean norm produce relatively -
shorter and shorter steps to the closest boundary; while, the directions generated
using the Dikin-Karmarkar norm produce relatively longer steps to the boundary.
These observations lead us to examine the phenomenon of short steps in steepest

descent.

/.

Figure 5.3 Steepest Descent Directions
with respect to the Euclidean Norm



Figure 5.4 Steepest Descent Directions with
respect to the Dikin-Karmarkar Norm

18
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Chapter 6

THEORETICAL RESULTS

Before a formal statement of theorems, we first set the stage. We begin by restricting
our attention to linear programming problems with nonnegativity constraints:

minimize ¢ Tz (6.1)
subject to z > 0, '

where ¢ > 0. We are interested in well-posed problems. It is for this reason that we are
restricting ourselves to problems in which the vector c is strictly positive, otherwise
problem (6.1) would not have a solution. We refer to such linear functionals, where
¢ > 0, as valid linear functionals. With the problem we are addressing now clearly
stated, we examine short steps in steepest descent methods applied to this problem.
From an interior point z > 0, we consider the direction of the shortest step to
the boundary of {z|z > 0}. This short step is illustrated for IR? in Figure 6.1.

T2

Ty

Figure 6.1 A Short Step in IR?

Definition 6.1 (A Shortest Step Direction) Consider a point z > 0.

We say that d is a shortest step direction from z if

d= «ej,



where o > 0, €& is the j*t standard basis vector, and j is the index of
i) J

the smallest component of z.

We would like to stay away from moving in a shortest step direction at any partic-
ular iteration; in fact, we wish to stay away from a neighborhood of such undesirable

directions. These directions are illustrated for IR® in Figure 6.2 and are defined as

I

)

Z3

Figure 6.2 ¢-Short Step Direction in R®

follows:

Definition 6.2 (e-Short Step Direction) Givena point z >0, let d=¢
be a shortest step direction from z. Choose § > 0, so that y =z + pd
is on the boundary F; = {z : z; =0}. For ¢ >0, let

Q ={ze€F|llz-ylz2=¢} (6-2)
We say that any s € IR" is an e-short step direction if

z+as €l (6.3)

for some a > 0.

6.1 Tools Necessary for Proof of Theorems

We wish to compare steepest feasible descent for problem (6.1), with respect to both
the Euclidean norm and the Dikin-Karmarkar norm. For linear programming prob-

lems of this form, it is impossible to say that at a particular iteration one norm choice
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will always give better performance than the other. However, if we look at all valid
linear functionals, what can we say about how these two choices of norm will effect
our performance overall?

At a given point z > 0, we consider the proportion of all valid linear functionals

that will give us an e-short step direction when we use a method of steepest descent,
i.e. we want to find

measure of valid linear functionals giving an e-short step direction

measure of valid linear functionals

So we must define a measure for the set of linear functionals.

6.1.1 Parametrization of Linear Functionals

T2

-— valid linear functionals

Ty

Figure 6.3 Parametrization of Linear Functionals in IR?

We begin by parametrizing linear functionals in terms of their unit normals. Thus

we represent a particular linear functional ¢ Ty by &, where

= Tl (6.4)

This leads to a parameter space which is the unit sphere.



6.1.2 Measure of Linear Functionals

Thus we will define the measure of a particular set of linear functionals to be the
surface area of the portion of the unit sphere which represents that set of linear
functionals. For the set of linear functionals valid for problem (6.1), the measure is
the surface area of the unit sphere in the positive orthant.

The surface area can be easily be computed using spherical coordinates and inte-
grating over the representative area of the unit sphere in IR". The angles that will

be integrated over, 6;, will be taken from
0<0; < 7!'/2

rather than 0 < §; < 7 since that valid linear functionals lie only in the positive
orthant. Let S(n) denote the surface area of the unit sphere that represents the valid

linear functionals, then
S(n) = /0"/2 {/ dVp-2} dbs, (6.5)
where dV,,_, is the (n — 2)-dimensional volume differential.
We will denote the surface area of the valid linear functionals for which the steepest
feasible descent direction at z is an e-short step direction by Sc(z,n).
Thus, the proportion of valid linear functionals in IR" for which the steepest
descent direction at = > 0, is an e-short step direction is given by

m(z) = -sz—zl;-’l (6.6)

For the Euclidean Norm

The surface area of the linear functionals that will produce e-short step directions
when the Euclidean norm is chosen can be seen in Figure 6.4. Consider a point z > 0.

Without loss of generality, let
Z, =min{Z;,1=1,...,n}.

For ease of notation, we will let r = Z,. View the X’ axis as representing the (n —1)-
dimensional surface in IR™ where z, = 0.
The surface area of the linear functionals for which the steepest descent direction

with respect to the Euclidean norm is an e-short step direction can be computed by



Figure 6.4 Computing the Measure for the Euclidean Norm

integrating 6,, from 0 to 0, i.e.
8
Siz,n) = /0 { / dV,_,} db, (6.7)
= 0{ dvaa}. (6.8)

The angle 8 is determined by € and r:

0 = arctan(e/Z,). (6.9)
Thus, for £ > 0 for which Z; = min{Z;,j = 1,...,n}., the proportion we are
interested in is given by
Se(z,n) _ arctan (e/Z:) (6.10)
S(n) 7 [2

For the Dikin-Karmarkar Norm

The problem that we need to solve is as follows—given a strictly positive point z € IR"
and € > 0, find the set of all linear functionals for which steepest descent with respect

to the Dikin-Karmarkar norm will produce an e-short step at Z.
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Figure 6.5 Computing the Measure for the Dikin-Karmarkar Norm

Without loss of generality, suppose that
Z, =min{Z;,j=1,...,n}.

Let r = Z,. Consider a unit sphere centered at Z. We make a change of coordinate
systems by translating the entire space by Z so that our sphere is now centered at the
origin. We will denote all points x € IR" as

x = (¥, z,),

where X’ = (z1,%2, ..., ZTn-1) € IR™"™!. QOur closest face f',, is now the surface at which
z, = —r. The center of our , region is (0',—r). See Figure 6.5.
Every e-short step direction from & produced by steepest descent with respect to
the norm can be written
s=—D?,
where D = diag(Z). Since z + s = —D%c € Q., then ||(0',—r) — D*c||2 < € and
(D?*¢c),, = r. Thus

Q. = {(x,z) | ID*|| < €cand z, =7} (6.11)
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where D' = diag (%1, T2, .-, Tn-1). Lhe linear functionals that give rise to {1, are
described by
F = {(x,z,) | |D*}| <r’ecand z. =1 }. (6.12)
Let (x, —7) € Fy. With the unit sphere expressed as
1

S = {ticsr) |Gl = 1}, N S
’ N

the surface of the unit sphere that describes the set of all linear functionals that will

(6.13)

give rise to e-short step is

X, = {__(_x_,ﬁ__ | ID'X']|2 < rze} . (6.14)

VI + 72

We make the change of variables y = z/||z]|2:
, x'

y = —— 6.15
VI + 72 (619
T
VI + 72 )
From (6.15), (6.16), and since ||y’|| + y2 = 1, we have
ry’
X = ————. (6.17)
vi-llyl?
Thus our surface of interest, (6.14), can be described by
T
Y = {y| ———|D% | < e? 6.18
{ T 19

Yo = {w = VI-IWF}. (6.19)

The surface increment we wish to integrate over is
dS = dy'[yn. (6.20)

So our surface area is given by
dy’

S(zn) = [ ——L—.
(&m) /Y\/l—lly'll?

(6.21)
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Now, we consider Y that we are integrating over. From (6.18) we have

n=1 /74 | 72,2
Z(iﬁle—) y2 < 1 (6.22)

2.2
=1 ree

Let Py
i ree
A= ("752_) (6.23)

Note that A; > 1.
We make a final change of variables, z = Ay’, where A = diag( A:;). From (6.21),

our surface integral is now

1 / dz
, (6.24)
MAz e dnm1 Iz 1 — (/M) = (22/D2)? = -+ - = (2n-1/An-1)?
where Z = {|| z ||z < 1}. Note that the integrand is bounded on Z.
1 1
(6.25)

< < :
V2 Pl YA E A

So (6.24) can be bounded.

6.1.3 Converging Sequence Described

With this concept of how to measure the effect of a particular norm choice, we again
consider a sequence of points {z*} which converge to the boundary; in particular,
we look at {z*} for which

zF = z*

where
z}=0, 1=
t ’ 6.26
zr >0, 1#7. (6:26)

forsome 1 < 3 <n.

6.2 Euclidean Steepest Feasible Descent Gives Short Steps

We consider the performance of steepest descent with respect to the Euclidean norm
and the Dikin-Karmarkar norm for this sequence converging to the boundary.
Finally, we give a formal statement of our theoretical results for steepest feasible

descent, with respect to the Euclidean norm, for problem (6.1).
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Theorem 6.1 Given a sequence {z*}, which converges to a point z~
satisfying (6.26) and an € > 0, for steepest descent with respect to the
Euclidean norm,

klgl; me(z*,n) = L (6.27)
Therefore, for the Euclidean norm, the proportion of linear functionals for
which the steepest descent direction is an e-short step direction is one in

the limit.

Proof Without loss of generality, assume that z¥ — z* for which zj = 0. From
(6.7) we see that

6 = arctan (ik) (6.28)
T
Letting k& — oo,
€

6 = arctan (x_’{) — /2. (6.29)

So from (6.6) and (6.7), we see that
klim m(z*,n) = 1. (6.30)
O

6.3 Dikin-Karmarkar Steepest Feasible Descent Avoids Short
Steps

We consider the same sequence {z*} converging to a point on the boundary and

look at m, for the Dikin-Karmarkar norm.

Theorem 6.2 Given a sequence {z*}, which converges to a point z*
satisfying (6.26) and an € > 0, for steepest descent with respect to the

Dikin-Karmarkar norm,
klirn me(zF,n) = 0. (6.31)

Therefore, for the Dikin-Karmarkar norm, the proportion of linear func-
tionals for which the steepest descent direction is an e-short step direction

is zero in the limit.



Proof Consider (6.24). Note that the integral is bounded so that

dz
0<m<
<ms) V1= (@/M)? = (22/%2)* = = (za-1/An1)

<M< (632

However, we consider the quantity multiplying the integral:

1 n1 r2e?
e -\ H (d;ﬁ+r2ez)‘ (6.33)

So for z* such that zt — 0, letting r — 0, we see that (6.33) converges to zero. [

Thus we find that as our iterates approach the boundary, we are assured that our

iterates will be bounded away from a region of short steps.



29

Chapter 7

NUMERICAL RESULTS

Our theory gives an explanation of the behavior of steepest feasible descent with
respect to to the Euclidean and the Dikin-Karmarkar norms for the simplified case
with only nonnegativity constraints. We wanted to discover whether this behavior
extended to linear programming problems with linear constraints added. We found
in our numerical experimentation that, indeed, the behavior described in our theory
occurred in this more general case.

In our numerical testing, steepest feasible descent with respect to the Dikin-
Karmarkar norm was compared to steepest feasible descent with respect to the Euclidean
norm. With the goal of discovering how this choice of norm in a steepest feasible de-
scent method affected length of the step to the boundary, we made the following
comparisons. For each linear programming problem tested, we applied the steepest
feasible descent method as described in Section 2.2, for both the Dikin-Karmarkar
norm and the Euclidean norm. The steps were taken a fixed fraction of the distance
to the boundary. At each iteration, a comparison was made of the length of the
steepest feasible descent step to the boundary for the solution method being applied,
and length of the steepest feasible descent step to the boundary for the other norm; a
comparison was also made between the amount of decrease in the objective function
given by each steepest feasible descent step to the boundary.

The tables contain the following notation and information. The step taken to
the boundary in the steepest feasible descent direction with respect to the Euclidean
norm is denoted by sp. Likewise, sq. denotes the step taken to the boundary in
the steepest feasible descent direction with respect to the Dikin-Karmarkar norm.
The new iterate The step was taken a fixed fraction (0 < a < 1) of the distance
to the boundary. In each table, the first column gives the iteration count ITN. The
second column is the ratio of the length of the Dikin-Karmarkar step, sqx, to the
length of the Euclidean step, sg. Thus, a ratio greater than one indicates that the
Dikin-Karmarkar step is longer. The second column compares the amount of decrease

in the objective function given by taking the Dikin-Karmarkar step to the amount
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of decrease possible by taking the Euclidean step. Again, a value greater than one
indicates that the Dikin-Karmarkar step provided the greater decrease.

Two types of problems were used in our testing. First, small, randomly gener-
ated problems were tested. Second, a subset of the Netlib linear programming test

problems were tested.

7.1 Small Dense Problems

The random problems generated had from 3 to 10 variables. The linear constraint
matrices were full rank and dense. The random problems tested were run with
the steplength parameter o varying from 0.8 to 0.99. There was not a signifi-
cant difference in the results for the different parameter values. As could be ex-
pected, with a smaller steplength the number of iterations was slightly greater than
with a longer steplength. The stopping criterion utilized was that the relative error,
lly — z*|l2/l|z*||2 < 107°. Representative results are for five problems are given in
Tables 7.1 through 7.5, with a summary in Table 7.6. In Table 7.1, we see that for

ITN | ¢ Tsae/c Tsp | llsall/|IsEll
1 1.4677 2.5484
2 5.7968 10.6109
3 2.7673 5.8767
4 1.5890 2.4118
5 2.7354 4.9937
6 1.6597 2.3401
7 3.3348 6.8309
8 1.9356 2.8371
9 1.7056 3.4690

10 1.7358 2.4666
11 3.4036 7.0678
12 1.8937 2.7170
13 1.8691 3.8283

Table 7.1 Comparison DK step and Euclidean step for RANDO1

RANDO1, at every iteration, the Dikin-Karmarkar step is longer and gives greater
decrease. Likewise, for RANDO2 and RANDO3, (Tables 7.2 and 7.3). Note that in
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ITN | ¢ Tsax/c Tse | llsarll/llsell
1 1.0217 1.0287
2 6.2182 32.2994
3 1.9711 5.7909
4 1.7690 4.5970
5 2.2801 9.6942
6 1.1108 1.2678

Table 7.2 Comparison DK step and Euclidean step for RANDO2

RANDO3, at iteration 7, the Dikin-Karmarkar steplength is over 2,000 times greater
than the Euclidean steplength and the function decrease at that iteration is more
that 150 times greater. In both RANDO4 and RANDO35, within the first iterations,
the Fuclidean norm step is longer and gives greater decrease, but as the solution
(and thus the boundary) is approached, in both problems, the Dikin-Karmarkar step
becomes longer and gives greater decrease.

Table 7.6 gives a summary of these five problems. The first two columns give
problem dimensions. The next two columns give the average function decrease ratios
and steplength ratios for each problem. Note that on all problems, on the average,

the Dikin-Karmarkar step was longer and gave greater decrease.

7.2 Netlib Test Problems

A subset of the smaller Netlib linear programming test set was tested. The problems
are large and sparse. The results for AFIRO are shown in Table 7.7 and are rep-
resentative of that obtained for this test set. (For this particular example, the step
taken was 0.9 of the distance to the boundary.) We see that the relative decrease
in the objective function is superior for the Dikin-Karmarkar norm and the lengths
of the steps that can be taken are significantly longer than those for the Euclidean
norm. On the average, the amount of objective function decrease possible from the
Dikin-Karmarkar step was more that 22 times that possible from the Euclidean step;
and the Dikin-Karmarkar steplength to the boundary was on the average more than
300 times that of the Euclidean steplength to the boundary.



ITN | ¢ Tsae/c Tse | lisall/lIsEll
1 3.3816 5.1067
2 1.2347 2.0131
3 5.6713 35.6394
4 3.0492 32.2240
5 2.1973 5.0041
6 7.2994 66.6234
7 156.2428 2132.7605
8 16.1168 217.8787
9 3.4182 25.2341

10 2.9379 7.6070
11 3.3591 11.9794
12 4.8396 15.6913
13 3.5877 15.4935
14 3.6922 9.7217
15 3.7458 13.8619
16 4.5560 15.0198
17 3.5331 14.6335

Table 7.3 Comparison DK step and Euclidean step for RANDO3

ITN | ¢ Tsa/c s | lisall/llszll
1 0.9027 0.9073
2 2.7223 3.4063
3 0.9370 0.9389
4 1.6543 2.0211
5 1.2457 1.3742
6 1.6943 2.0838
7 1.2348 1.3599
8 1.7011 2.0941
9 1.2326 1.3570
10 1.7024 2.0962
11 1.2322 1.3564

Table 7.4 Comparison DK step and Euclidean step for RANDO4



ITN | ¢ Tsae/c Tsp | llsall/llsell
1 0.9134 0.9523
2 2.6809 6.9676
3 14.4369 52.8578
4 3.6554 60.7037
5 2.6453 96.2155
6 2.1560 13.9415
7 4.3167 114.4900
8 1.7907 11.9714
9 5.0727 133.9721

10 1.9639 12.1541
11 3.0697 67.0537
12 1.9113 22.2856
13 5.2271 140.1575
14 2.1218 12.7265

Table 7.5 Comparison DK step and Euclidean step for RANDO5

NUMBER NUMBER AVERAGE | AVERAGE
PROBLEM of of FUNCTION STEP
VARIABLES | CONSTRAINTS RATIO RATIO
RANDO1 9 3 2.6528 4.8332
RANDO2 S 3 1.8583 5.8985
RANDO3 9 1 13.2515 153.1547
RANDO4 6 4 1.4781 1.4131
RANDO5 10 6 3.7116 52.4497

Table 7.6 RANDOM PROBLEM SUMMARIES (a = 0.9)
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ITN | ¢ Tsac/c Tse | lIsall/lIsEll
1 11.5739 175.4462
2 19.8760 282.9671
3 24.3338 356.0513
4 20.5237 291.9174
5 37.8911 567.2736
6 22.6763 318.1621
7 19.0612 275.0813
8 22.7428 321.0754
9 24.5948 356.2554

[AVG | 22.5860 | 327.1366 |

Table 7.7 Comparison DK step and
Euclidean step for AFIRO; (n = 51; m = 27)
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Chapter 8

CONCLUDING REMARKS

We have developed mathematical theory that describes both the asymptotic short
step behavior of steepest feasible descent with respect to the Euclidean norm and
the avoidance of short steps in steepest feasible descent with respect to the Dikin-
Karmarkar norm as the boundary is approached. This theoretical behavior is borne
out in practice on problems with linear equality constraints added.

We conjectured that if information about all the boundaries is incorporated into
the norm, then finding such a norm that would also give us the longest step possible,
might give even better numerical results for steepest feasible descent than with the
Dikin-Karmarkar norm.

As we developed the theory, we restricted our attention to problems with only

nonnegativity constraints:

minimize c¢Tz

. (8.1)
subject to = >0,

where ¢ > 0. Observe that z* = 0 solves this simple problem. Hence, the step s
that would solve the problem in one iteration from a strictly feasible point z would
be s — = and this is also the longest step that can be taken among all steps that
maintain feasibility and give descent. Furthermore, this is the steepest descent step

for the weighted ¢, norm:

-0 =1DZ" - lleos (8.2)

where D, = diag(z).
We might expect long steps and good convergence behavior if we were to use a
steepest feasible descent method with respect to this weighted norm to solve the more

general problem (8.3):
T

minimize c'z
subject to Ar =10 (8.3)
z >0,

where ¢, z € IR", A € R™*", and b € IR™.
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However, if we use this norm in a steepest feasible descent method for prob-
lem (8.3) it is not clear how the steepest descent subproblem should be solved. (The
obvious approach would require the solution of a linear programming problems and
this would not lead to an efficient algorithm.) We therefore restricted our attention
to weighted Euclidean norms so that the steepest feasible descent direction can be
computed by evaluating a linear projection, i.e. solving a system of linear equations.
We therefore considered a weighted Euclidean norm. Interestingly, we discovered that
it was possible to use a weighted Euclidean norm that would give us the same “ideal”
direction as our weighted infinity norm (8.2).

We consider the following weighted Euclidean norm:

=1l (8.4)

where
w?=D,C™', (8.5)

for C = diag(c) and D, = diag(z ). The vector, —z, is a steepest feasible descent
direction with respect to this norm. In other words, the steepest feasible descent
direction will reach the solution in one step, as does the weighted infinity norm (8.2).
Utilizing this norm, the computational effort to solve the steepest feasible descent
subproblem involves a matrix factorization versus the solution to a complete linear
programming problem as in the case of a weighted infinity norm. We will refer to
then norm satisfying defined by (8.5) as the long-step norm. It is clear that steepest
feasible descent with respect to the long-step norm satisfies Theorem 6.2.

Using the same set of test problems discussed in Chapter 7, we ran steepest feasible
descent with respect to the long-step norm. Comparisons were made between the
behavior of steepest feasible descent with respect to the long-step norm and steepest
feasible descent with respect to the Euclidean norm; and between the behavior for the
long-step norm and the Dikin-Karmarkar norm. As expected, when comparison was
made with Euclidean norm steepest feasible descent the long-step norm gave steps
that were significantly longer, and also greater decrease in the objective function than
was possible possible by using the Euclidean norm. However, in half of the problems
tested, the long-step norm steepest feasible descent was unable to converge to the
solution.

When compared to steepest feasible descent with respect to the Dikin-Karmarkar

norm, when the long-step norm steepest feasible descent was able to find the solution,
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the long-step norm took longer steps and had greater function decrease. However, it
took on the average 46% more iterations.

The major obstacle that the implementation of steepest feasible descent with
respect to the long-step norm encountered was that the weighting matrix (8.5) tended
to become numerically singular before a solution could be found.

Our experience with this long-step norm leads us to believe that the good conver-
gence behavior exhibited when using the Dikin-Karmarkar norm is not solely due to
the fact that it takes longer steps than the Euclidean norm. Neither can the behavior
be attributed to only the fact that boundary information is incorporated into the
norm. We believe that an important factor in the success of the Dikin-Karmarkar
norm is the fact that all components are scaled uniformly, including those components

that are zero at the solution [3].
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